First/Second Semester B.E. Degree Examination, June/July 2013 Engineering Physics | | | | | Engineering | Physic | S | | | |-----|-------|-----------|------------------------------------|--|---------------------------|-----------------------------------|-------------------------------|-----------------------| | Tin | ne: 3 | 3 hrs. | | | _ | | Max. Ma | arks:100 | | Not | 2. | Answei | r all objective ty | ll questions, choosing at le
ope questions only on OMR
pe questions on sheets othe | sheet page 5 | of the answer | | | | | 4. | Physica | al Constants : | Planck's constant, $h = 6$ | $.63 \times 10^{-34} Js$ | , Electron ch | arge, $e = 1.6 \times$ | $(10^{-19} C)$ | | | | | | Electron mass, $m = 9.11$ | $\times 10^{-31}$ kg, | Velocity of | light, $C = 3 \times 1$ | $0^8 mS^{-1}$ | | | | | | | | | | | | _ | | Q1 | eri | <u>PART -</u> | <u>- A</u> | | | (A. 1. M.) | | 1 | a. | | | answers for the following | | مراجع المعاملة | 9 | (04 Marks) | | | | i) | Wien's displa | ue stars emits radiations | or commuo | us waveleng | uis, then acco | orunig to | | | | | | s hotter than red star | B) Rec | d star is botte | er than blue st | ar | | | | | C) Both stars | are at same temperature | D) Dif | ficult to cond | clude. | | | | | ii) | | on for de-Broglie wave | | | | celerating | | | | , | potential V is | /m | | Na- | | | | | | | 12.26 | 12.26 | <u> </u> | 26 | $\frac{12.26}{}$ | um | | | | | A) $\sqrt{\overline{V}}$ III | $B) \frac{12.26}{\sqrt{V}} A^{\circ}$ | | $\sqrt{\nabla}$ | $\sqrt{\overline{V}}$ | μπ | | | | iii) | | oves with velocity 3×1 | 1 7 N. W. | | | | | | | / | | roup velocity of the partic | | Č | | | | | | | | S^{-1} B) 3×10^{10} mS ⁻¹ | | <10 ⁶ mS ⁻¹ | D) 1.5×10 | 0^6 mS^{-1} | | | | iv) | | the Compton effect, th | | | | | | | | | greater than z | | , MARTE | | | | | | _ | | | B) Doesn't chan | | | D) None o | | | | b. | | | on for group velocity on t | | | | | | | | | | n group velocity and phas | | | , | (08 Marks) | | | c. | condi | | s law reduces to Wien | s law and | Rayleigh-jea | | (05 Marks) | | | d. | | New York | oglie wavelength associate | ted with an e | lectron of en | ` | • | | | ш. | Calc | | ogne wavelength associati | ica with an c | | 016) 1.5 0 (| (00 1/1411110) | | 2 | a. | Choc | se the correct | answers for the following | g: | | **** | (04 Marks) | | | | i) | | f the lowest state in one d | imensional p | otential box | of length a = | 1 unit is, | | | | | A) $\frac{h^2}{8m}$ | B) zero | C) $\frac{h}{4n}$ | 12 | $D) \frac{h^2}{2ma^2}$ | _ | | | | | | | | ıa | 2 LF164 | | | | | ii) | - | which is not bound to an | | | | value is, | | | | | A) zero | | • | ot quantized | er
 | Carlotte | | | | ••• | C) infinity | |)) finite but o | | 1:1- | | | | | iii) | | inty in the position of a p | article is equ | ai to its de-B | rogne wavele | ngun une n | | | | | • | its momentum will be, | | D | 1 | h | | | | | A) $\Delta P \ge \frac{\Pi}{4\pi}$ | B) $\Delta P \ge \frac{h}{2\pi}$ | C) Al | $P \ge \frac{1}{4\pi}$ | D) $\Delta P \ge \frac{1}{2}$ | <u>n</u> | | | | iv) | 770 | on to be present inside | | 170 | - | • | | | | 10) | | e electron must be, | the nucleus | or an atom | the difection | ity in the | | | | | - | or equal to the radius of | the nucleus | | | | | | | | | or equal to the diameter | | ıs. | | | | | | | | the diameter of the nucle | | | | | | | | | D) less than o | or equal to the diameter o | f the nucleus | . | | | | | | | | 1 | of 4 | | | | (05 Marks) (03 Marks) | 2 | b. | Using time independent Schrodinger's wave equation, obtain the expression for normalized wave function for a particle in one dimensional potential well of infinite heig (08 Mai | | | | | | |------|----|--|--|--|--|--|--| | | c. | State Heisenberg's uncertainty principle. Write its physical significance. (04 Marks) | | | | | | | | d. | A spectral line of wavelength 5461 \mathring{A} has a width of 10^{-4} \mathring{A} . Evaluate the minimum time spent by the electrons in the upper energy state. (04 Marks) | | | | | | | 3 | a. | Choose the correct answers for the following: i) In the following the ohm's law is, (04 Marks) | | | | | | | | | A) $J = \sigma E$ B) $J = \frac{\sigma}{E}$ C) $J = \sigma E^2$ D) $J = \frac{E}{\sigma}$ | | | | | | | | | ii) Mobility of electron is, A) Reciprocal of conductivity B) Average electrons drift velocity per unit electric field. C) Flow of electrons per unit cross sectional area. D) Reciprocal of resistivity iii) The dependence of mean free path λ on temperature T is, | | | | | | | | | A) $\lambda \alpha T$ B) $\lambda \alpha \sqrt{T}$ C) $\lambda \alpha \frac{1}{T}$ D) $\lambda \alpha \frac{1}{\sqrt{T}}$ | | | | | | | | | iv) According to free electron theory, the free electrons are treated as, A) Rigidity fixed lattice points B) Liquid molecules C) Gas molecule D) None of these | | | | | | | | b. | Define Fermi energy and Fermi factor. Discuss the variation of fermifactor with temperature and energy. (08 Marks) | | | | | | | | c. | What is mean collision time? Using free electron theory in a metal, obtain an expression for electrical conductivity in terms of mean collision time. (06 Marks) | | | | | | | | d. | State and explain Matthiessen's rule. (02 Marks) | | | | | | | 4 a. | | Choose the correct answers for the following: i) Electronic polarization, A) Independent of temperature B) Increases with temperature | | | | | | | | | C) Decreases with temperature D) None of these ii) The correct relation among the following 4 equations is, A) $E = \varepsilon_0(\varepsilon_r - 1)P$ B) $P = \varepsilon_0(\varepsilon_r - 1)E$ C) $\varepsilon_r = \chi - 1$ D) $D = \varepsilon_0(\varepsilon_r - 1)E$ | | | | | | | | | iii) For Ferromagnetic substances, the Curie-Wiess law is given as,
A) $\epsilon_r = \frac{C}{T}$ B) $\epsilon_r = \frac{T - \theta}{C}$ C) $\epsilon_r = \frac{C}{(T - \theta)}$ D) $\epsilon_r = \frac{C}{(T + \theta)}$ | | | | | | | | | iv) In the inverse piezoelectric effect, A) Ultrasonic waves are produced C) Microwaves are produced D) None of these | | | | | | | | b. | What is internal field? Derive an expression for internal field in case of one dimensional array of atoms in dielectric solids. (08 Marks) | | | | | | c. Describe magnetic hysteresis in Ferromagnetic material. d. Explain any three applications of piezoelectric material. (06 Marks) (06 Marks) ## PART - B | 5 | a. | Choose the correct answers for the following | : | (04 Marks) | | | | |---|---------------|---|--|-----------------------------------|--|--|--| | | | i) The pumping action in diode laser is by, | | | | | | | | | A) Optical pumping B) Electrical disch | | | | | | | | | ii) The expression for energy density in term | ms of Einstein's coefficie | ents, | | | | | | | | ۸ ا | | | | | | | | A) $U_{\gamma} = \frac{B}{A} \left[\frac{1}{e^{h\gamma} KT - 1} \right]$ | B) $U_{\gamma} = \frac{A}{B} \left[\frac{1}{1 - e^{h\gamma}} \right]$ | KT] | | | | | | | C) $U_{\gamma} = \frac{A}{B} \left[\frac{1}{e^{h\gamma} KT - 1} \right]$ | $D) U_{\gamma} = \frac{A}{B} \left[e^{\frac{h\gamma}{KT}} \right]$ | | | | | | | | iii) In order to see the image of an object red | corded by holography. | | | | | | | | A) It is enough if we just have the holog | gram. | | | | | | | | B) We need the hologram and the refere | ence beam. | | | | | | | | C) We need the hologram, the reference | | | | | | | | | D) We need the hologram, the refere the object. | ence beam and the obj | ect beam as well as | | | | | | | iv) In a laser system when the energy difference between two energy levels is the average power output of laser beam is found to be 4 mw. Then number | | | | | | | | | emitted per second is, | is lound to be 4 mw. In | en number of r notons | | | | | | | | C) 0.5×10^{16} | D) 2×10^{19} | | | | | | b. | Describe the construction of He-Ne laser and level diagram and mention few applications. | d explain its working w | ith the help of energy (08 Marks) | | | | | | c. | Explain the terms spontaneous emission and s | stimulated emission. | (04 Marks) | | | | | | d. | Explain laser welding and cutting process with | (04 Marks) | | | | | | | | 2. P | | , | | | | | | | | | | | | | | 6 | 0 | Choose the correct answers for the following | • | (04 Marks) | | | | | U | a. | i) Superconductors are | | (04 Marks) | | | | | | | A) Ferromagnetic B) Paramagnetic | C) Antiferromagnetic | D) Diamagnetic | | | | | | | ii) All high temperature superconductors ar | re different types of oxid | es of | | | | | | | A) Mercury B) Lead | C) Copper | D) Tin | | | | | | | iii) The quantum of magnetic flux is given by | * * * | | | | | | | | | · | D) 2h | | | | | | in the second | A) $\frac{2e}{h}$ B) $\frac{h}{2e}$ | C) $\frac{\text{he}}{2}$ | D) — , · · · | | | | | | | iv) Numerical aperture of an optical fiber de | - | | | | | | | | A) Acceptance angle B) Diameter of th | | D) None of these | | | | | | b. | Discuss point to point optical fiber communic | cation system and mention | on its advantages over | | | | the conventional communication systems. d. The angle of acceptance of an optical fiber is 30° when kept in air. Find the angle of acceptance when it is in a medium of refractive index 1.33. (04 Marks) | 7 | a. | Choose the correct answers for the following: i) A crystal of hexagonal lattice has unit cell with sides, | | | | | | | |---|----------|--|---|--|---|--------------------------------------|--|--| | | | | A) $a \neq b \neq c, \alpha = \beta =$ | $90^{\circ}, \gamma = 120^{\circ}$ | B) $a = b = c, \alpha = \beta =$ | $90^{\circ}, \gamma = 120^{\circ}$ | | | | | | | C) $a \neq b = c, \alpha = \beta =$ | $= \gamma = 90^{\circ}$ | D) $a = b \neq c, \alpha = \beta =$ | $90^{\circ}, \ \gamma = 120^{\circ}$ | | | | | | ii) | In Bragg's spectrometer, for every rotation θ of the turn table, the detector turns by an angle, | | | | | | | | | | Α) θ | B) 40 | C) 20 | D) $\frac{\theta}{2}$ | | | | | | iii) | The interatomic distance between the sodium and chlorine atoms in sodium crystal is, | | | | | | | | | | A) 5.68 Å | B) 2.81 Å | C) 6.62 Å | D) 5.51 Å | | | | | | iv) | | ing in a crystal is 1 Å n to take place, the wa | and the glancing angle
velength of X-rays is, | e is 35°. For the first | | | | | b. | What | A) 1.147 Å t are Miller indices? E | B) 0.573 Å xplain the procedure to | C) 1.638 Å o find Miller indices wi | D) 0.819 Å th an example. (05 Marks) | | | | | c. | Obta | in the expression for i | nterplanar spacing inte | erms of 'a' for a cubic l | attice. (05 Marks) | | | | | d. | d. Calculate the atomic packing factor for SC, FCC and BCC lattices. | | | | | | | | 8 | a. | Choo
i)
ii)
iii)
iv) | C) It is only theoretic D) Setting up a stand The velocity of ultras A) Bulk modulus dec C) Bulk modulus inc The minimum size of called, A) Pico size The number of carbo | can be made by, a glass plate ical grating to pressure cal concept. ling waves pattern in a sonic wave through the creases reases of matter below which B) Nano size n atoms present in C ₆₀ | B) Density decreases D) Volume increases the properties becom C) Micro size | | | | | | | | A) 60 | B) 32 | C) 20 | D) 12 | | | | | b. | Desc | | • | C) 20 ods of preparation of na | • | | | | | b.
c. | Desc | cribe with simple illust | trations, the two methorsuring velocity of ultr | , | no materials. (06 Marks) | | | ****