

First/Second Semester B.E. Degree Examination, June/July 2013 Engineering Physics

				Engineering	Physic	S		
Tin	ne: 3	3 hrs.			_		Max. Ma	arks:100
Not	2.	Answei	r all objective ty	ll questions, choosing at le ope questions only on OMR pe questions on sheets othe	sheet page 5	of the answer		
	4.	Physica	al Constants :	Planck's constant, $h = 6$	$.63 \times 10^{-34} Js$, Electron ch	arge, $e = 1.6 \times$	$(10^{-19} C)$
				Electron mass, $m = 9.11$	$\times 10^{-31}$ kg,	Velocity of	light, $C = 3 \times 1$	$0^8 mS^{-1}$
_		Q1	eri	<u>PART -</u>	<u>- A</u>			(A. 1. M.)
1	a.			answers for the following		مراجع المعاملة	9	(04 Marks)
		i)	Wien's displa	ue stars emits radiations	or commuo	us waveleng	uis, then acco	orunig to
				s hotter than red star	B) Rec	d star is botte	er than blue st	ar
			C) Both stars	are at same temperature	D) Dif	ficult to cond	clude.	
		ii)		on for de-Broglie wave				celerating
		,	potential V is	/m		Na-		
			12.26	12.26	<u> </u>	26	$\frac{12.26}{}$	um
			A) $\sqrt{\overline{V}}$ III	$B) \frac{12.26}{\sqrt{V}} A^{\circ}$		$\sqrt{\nabla}$	$\sqrt{\overline{V}}$	μπ
		iii)		oves with velocity 3×1	1 7 N. W.			
		/		roup velocity of the partic		Č		
				S^{-1} B) 3×10^{10} mS ⁻¹		<10 ⁶ mS ⁻¹	D) 1.5×10	0^6 mS^{-1}
		iv)		the Compton effect, th				
			greater than z		, MARTE			
	_			B) Doesn't chan			D) None o	
	b.			on for group velocity on t				
				n group velocity and phas			,	(08 Marks)
	c.	condi		s law reduces to Wien	s law and	Rayleigh-jea		(05 Marks)
	d.		New York	oglie wavelength associate	ted with an e	lectron of en	`	•
	ш.	Calc		ogne wavelength associati	ica with an c		016) 1.5 0 ((00 1/1411110)
2	a.	Choc	se the correct	answers for the following	g:		****	(04 Marks)
		i)		f the lowest state in one d	imensional p	otential box	of length a =	1 unit is,
			A) $\frac{h^2}{8m}$	B) zero	C) $\frac{h}{4n}$	12	$D) \frac{h^2}{2ma^2}$	_
						ıa	2 LF164	
		ii)	-	which is not bound to an				value is,
			A) zero		•	ot quantized	er 	Carlotte
		•••	C) infinity)) finite but o		1:1-	
		iii)		inty in the position of a p	article is equ	ai to its de-B	rogne wavele	ngun une n
			•	its momentum will be,		D	1	h
			A) $\Delta P \ge \frac{\Pi}{4\pi}$	B) $\Delta P \ge \frac{h}{2\pi}$	C) Al	$P \ge \frac{1}{4\pi}$	D) $\Delta P \ge \frac{1}{2}$	<u>n</u>
		iv)	770	on to be present inside		170	-	•
		10)		e electron must be,	the nucleus	or an atom	the difection	ity in the
			-	or equal to the radius of	the nucleus			
				or equal to the diameter		ıs.		
				the diameter of the nucle				
			D) less than o	or equal to the diameter o	f the nucleus	.		
				1	of 4			

(05 Marks)

(03 Marks)

2	b.	Using time independent Schrodinger's wave equation, obtain the expression for normalized wave function for a particle in one dimensional potential well of infinite heig (08 Mai					
	c.	State Heisenberg's uncertainty principle. Write its physical significance. (04 Marks)					
	d.	A spectral line of wavelength 5461 \mathring{A} has a width of 10^{-4} \mathring{A} . Evaluate the minimum time spent by the electrons in the upper energy state. (04 Marks)					
3	a.	Choose the correct answers for the following: i) In the following the ohm's law is, (04 Marks)					
		A) $J = \sigma E$ B) $J = \frac{\sigma}{E}$ C) $J = \sigma E^2$ D) $J = \frac{E}{\sigma}$					
		 ii) Mobility of electron is, A) Reciprocal of conductivity B) Average electrons drift velocity per unit electric field. C) Flow of electrons per unit cross sectional area. D) Reciprocal of resistivity iii) The dependence of mean free path λ on temperature T is, 					
		A) $\lambda \alpha T$ B) $\lambda \alpha \sqrt{T}$ C) $\lambda \alpha \frac{1}{T}$ D) $\lambda \alpha \frac{1}{\sqrt{T}}$					
		iv) According to free electron theory, the free electrons are treated as, A) Rigidity fixed lattice points B) Liquid molecules C) Gas molecule D) None of these					
	b.	Define Fermi energy and Fermi factor. Discuss the variation of fermifactor with temperature and energy. (08 Marks)					
	c.	What is mean collision time? Using free electron theory in a metal, obtain an expression for electrical conductivity in terms of mean collision time. (06 Marks)					
	d.	State and explain Matthiessen's rule. (02 Marks)					
4 a.		Choose the correct answers for the following: i) Electronic polarization, A) Independent of temperature B) Increases with temperature					
		C) Decreases with temperature D) None of these ii) The correct relation among the following 4 equations is, A) $E = \varepsilon_0(\varepsilon_r - 1)P$ B) $P = \varepsilon_0(\varepsilon_r - 1)E$ C) $\varepsilon_r = \chi - 1$ D) $D = \varepsilon_0(\varepsilon_r - 1)E$					
		iii) For Ferromagnetic substances, the Curie-Wiess law is given as, A) $\epsilon_r = \frac{C}{T}$ B) $\epsilon_r = \frac{T - \theta}{C}$ C) $\epsilon_r = \frac{C}{(T - \theta)}$ D) $\epsilon_r = \frac{C}{(T + \theta)}$					
		iv) In the inverse piezoelectric effect, A) Ultrasonic waves are produced C) Microwaves are produced D) None of these					
	b.	What is internal field? Derive an expression for internal field in case of one dimensional array of atoms in dielectric solids. (08 Marks)					

c. Describe magnetic hysteresis in Ferromagnetic material.

d. Explain any three applications of piezoelectric material.

(06 Marks)

(06 Marks)

PART - B

5	a.	Choose the correct answers for the following	:	(04 Marks)			
		i) The pumping action in diode laser is by,					
		A) Optical pumping B) Electrical disch					
		ii) The expression for energy density in term	ms of Einstein's coefficie	ents,			
			۸ ا				
		A) $U_{\gamma} = \frac{B}{A} \left[\frac{1}{e^{h\gamma} KT - 1} \right]$	B) $U_{\gamma} = \frac{A}{B} \left[\frac{1}{1 - e^{h\gamma}} \right]$	KT]			
		C) $U_{\gamma} = \frac{A}{B} \left[\frac{1}{e^{h\gamma} KT - 1} \right]$	$D) U_{\gamma} = \frac{A}{B} \left[e^{\frac{h\gamma}{KT}} \right]$				
		iii) In order to see the image of an object red	corded by holography.				
		A) It is enough if we just have the holog	gram.				
		B) We need the hologram and the refere	ence beam.				
		C) We need the hologram, the reference					
		D) We need the hologram, the refere the object.	ence beam and the obj	ect beam as well as			
		iv) In a laser system when the energy difference between two energy levels is the average power output of laser beam is found to be 4 mw. Then number					
		emitted per second is,	is lound to be 4 mw. In	en number of r notons			
			C) 0.5×10^{16}	D) 2×10^{19}			
	b.	Describe the construction of He-Ne laser and level diagram and mention few applications.	d explain its working w	ith the help of energy (08 Marks)			
	c.	Explain the terms spontaneous emission and s	stimulated emission.	(04 Marks)			
	d.	Explain laser welding and cutting process with	(04 Marks)				
		2. P		,			
6	0	Choose the correct answers for the following	•	(04 Marks)			
U	a.	i) Superconductors are		(04 Marks)			
		A) Ferromagnetic B) Paramagnetic	C) Antiferromagnetic	D) Diamagnetic			
		ii) All high temperature superconductors ar	re different types of oxid	es of			
		A) Mercury B) Lead	C) Copper	D) Tin			
		iii) The quantum of magnetic flux is given by	* * *				
			·	D) 2h			
	in the second	A) $\frac{2e}{h}$ B) $\frac{h}{2e}$	C) $\frac{\text{he}}{2}$	D) — , · · ·			
		iv) Numerical aperture of an optical fiber de	-				
		A) Acceptance angle B) Diameter of th		D) None of these			
	b.	Discuss point to point optical fiber communic	cation system and mention	on its advantages over			

the conventional communication systems.

d. The angle of acceptance of an optical fiber is 30° when kept in air. Find the angle of acceptance when it is in a medium of refractive index 1.33. (04 Marks)

7	a.	Choose the correct answers for the following: i) A crystal of hexagonal lattice has unit cell with sides,						
			A) $a \neq b \neq c, \alpha = \beta =$	$90^{\circ}, \gamma = 120^{\circ}$	B) $a = b = c, \alpha = \beta =$	$90^{\circ}, \gamma = 120^{\circ}$		
			C) $a \neq b = c, \alpha = \beta =$	$= \gamma = 90^{\circ}$	D) $a = b \neq c, \alpha = \beta =$	$90^{\circ}, \ \gamma = 120^{\circ}$		
		ii)	In Bragg's spectrometer, for every rotation θ of the turn table, the detector turns by an angle,					
			Α) θ	B) 40	C) 20	D) $\frac{\theta}{2}$		
		iii)	The interatomic distance between the sodium and chlorine atoms in sodium crystal is,					
			A) 5.68 Å	B) 2.81 Å	C) 6.62 Å	D) 5.51 Å		
		iv)		ing in a crystal is 1 Å n to take place, the wa	and the glancing angle velength of X-rays is,	e is 35°. For the first		
	b.	What	A) 1.147 Å t are Miller indices? E	B) 0.573 Å xplain the procedure to	C) 1.638 Å o find Miller indices wi	D) 0.819 Å th an example. (05 Marks)		
	c.	Obta	in the expression for i	nterplanar spacing inte	erms of 'a' for a cubic l	attice. (05 Marks)		
	d.	d. Calculate the atomic packing factor for SC, FCC and BCC lattices.						
8	a.	Choo i) ii) iii) iv)	C) It is only theoretic D) Setting up a stand The velocity of ultras A) Bulk modulus dec C) Bulk modulus inc The minimum size of called, A) Pico size The number of carbo	can be made by, a glass plate ical grating to pressure cal concept. ling waves pattern in a sonic wave through the creases reases of matter below which B) Nano size n atoms present in C ₆₀	B) Density decreases D) Volume increases the properties becom C) Micro size			
			A) 60	B) 32	C) 20	D) 12		
	b.	Desc		•	C) 20 ods of preparation of na	•		
	b. c.	Desc	cribe with simple illust	trations, the two methorsuring velocity of ultr	,	no materials. (06 Marks)		
